Browsing by Author "Stanković, Igor"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemA platform for nanomagnetism – assembled ferromagnetic and antiferromagnetic dipolar tubesStanković, Igor; Dašić, Miljan; Otálora, Jorge A.; García, CarlosWe report an interesting case where magnetic phenomena can transcend mesoscopic scales. Our system consists of tubes created by the assembly of dipolar spheres. The cylindrical topology results in the breakup of degeneracy observed in planar square and triangular packings. As far as the ground state is concerned, the tubes switch from circular to axial magnetization with increasing tube length. All magnetostatic properties found in magnetic nanotubes, in which the dipolar interaction is comparable to or dominant over the exchange interaction, are reproduced by the dipolar tubes including an intermediary helically magnetized state. Besides, we discuss the antiferromagnetic phase resulting from the square arrangement of the dipolar spheres and its interesting vortex state.
- ItemEffects of Water Content on the Transport and Thermodynamic Properties of Phosphonium Ionic LiquidsStanković, Igor; Dašić, Miljan; Jovanović, Mateja; Martini, AshlieWe present a numerical investigation of the influence of water content on the dynamic properties of a family of phosphonium-based room-temperature ionic liquids. The study presents a compelling correlation between structural changes in water-ionic liquid solutions and thermodynamic and transport properties across diverse systems. The results for phosphonium ionic liquids are compared with 1-butyl-3-methylimidazolium hexaphosphate ([bmim]PF6) as a reference. Through this approach, phosphonium cation structure-related characteristics can be identified and placed within the broader context of ionic liquids. These insights are underpinned by observed changes in interaction energy, boiling point, diffusion rate, and viscosity, highlighting the crucial role of water molecules in weakening the strength of interactions between ions within the ionic liquid. The investigation also explains temperature-dependent trends in phosphonium cations, showing that alkyl group length and molecular symmetry are important tuning parameters for the strength of Coulomb interactions. These results contribute to a refined understanding of phosphonium ionic liquid behavior in the presence of water, offering valuable insights for optimizing their use in diverse fields.
- ItemInfluence of confinement on flow and lubrication properties of a salt model ionic liquid investigated with molecular dynamicsDašić, Miljan; Stanković, Igor; Gkagkas, KonstantinosWe present a molecular dynamics study of the effects of confinement on the lubrication and flow properties of ionic liquids. We use a coarse-grained salt model description of ionic liquid as a lubricant confined between finite solid plates and subjected to two dynamic regimes: shear and cyclic loading. The impact of confinement on the ion arrangement and mechanical response of the system has been studied in detail and compared to static and bulk properties. The results have revealed that the wall slip has a profound influence on the force built-up as a response to mechanical deformation and that at the same time in the dynamic regime interaction with the walls represents a principal driving force governing the behaviour of ionic liquid in the gap. We also observe a transition from a dense liquid to an ordered and potentially solidified state of the ionic liquid taking place under variable normal loads and under shear.
- ItemMolecular dynamics investigation of the influence of the shape of the cation on the structure and lubrication properties of ionic liquidsDašić, Miljan; Stanković, Igor; Gkagkas, KonstantinosWe present a theoretical study of the influence of the molecular geometry of the cation on the response of ionic liquids (ILs) to confinement and mechanical strain. The so-called tailed model includes a large spherical anion and asymmetric cation consisting of a charged head and a neutral tail. Despite its simplicity, this model recovers a wide range of structures seen in ILs: a simple cubic lattice for small tails, a liquid-like state for symmetric cation-tail dimers, and a molecular layer structure for dimers with large tails. A common feature of all investigated model ILs is the formation of a fixed (stable) layer of cations along solid plates. We observe a single anionic layer for small gap widths, a double anionic layer for intermediate ones, and tail-to-tail layer formation for wide gaps. The normal force evolution with gap size can be related to the layer formed inside the gap. The low hysteretic losses during the linear cyclic motion suggest the presence of strong slip inside the gap. In our model the specific friction is low and the friction force decreases with tail size.
- ItemMolecules on rails: Friction anisotropy and preferential sliding directions of organic nanocrystallites on two-dimensional materialsVasić, Borislav; Stanković, Igor; Matković, Aleksandar; Kratzer, Markus; Ganser, Christian; Gajić, Radoš; Teichert, ChristianTwo-dimensional (2D) materials are envisaged as ultra-thin solid lubricants for nanomechanical systems. So far, their frictional properties at the nanoscale have been studied by standard friction force microscopy. However, lateral manipulation of nanoparticles is a more suitable method to study the dependence of friction on the crystallography of two contacting surfaces. Still, such experiments are lacking. In this study, we combine atomic force microscopy (AFM) based lateral manipulation and molecular dynamics simulations in order to investigate the movements of organic needle-like nanocrystallites grown by van der Waals epitaxy on graphene and hexagonal boron nitride. We observe that nanoneedle fragments-when pushed by an AFM tip-do not move along the original pushing directions. Instead, they slide on the 2D materials preferentially along the needles' growth directions, which act as invisible rails along commensurate directions. Further, when the nanocrystallites were rotated by applying a torque with the AFM tip across the preferential sliding directions, we find an increase of the torsional signal of the AFM cantilever. We demonstrate in conjunction with simulations that both, the significant friction anisotropy and preferential sliding directions are determined by the complex epitaxial relation and arise from the commensurate and incommensurate states between the organic nanocrystallites and the 2D materials.
- ItemNature of Dynamic Friction in a Humid Hydrophobic NanocontactNoël, Olivier; Mazeran, Pierre-Emmanuel; Stanković, IgorThe physics of dynamic friction on water molecule contaminated surfaces is still poorly understood. In line with the growing interest in hydrophobic contact for industrial applications, this paper focuses on friction mechanisms in such interfaces. As a commonly used material, contact with graphite is considered in a twin-fold approach based on experimental investigations using the circular mode atomic force microscopy technique combined with molecular dynamic simulations. We demonstrate that an intuitive paradigm, which asserts that water molecules are squeezed out of a hydrophobic contact, should be refined. As a consequence, we introduce a mechanism considering a droplet produced within the sliding nanocontact by the accumulation of water adsorbed on the substrate. Then we show that a full slip regime of the droplet sliding on the hydrophobic substrate explains the experimental tribological behavior.
- ItemSpontaneous in-flight assembly of magnetic nanoparticles into macroscopic chainsBalcells, Lluis; Stanković, Igor; Konstantinović, Zorica; Alagh, Aanchal; Fuentes, Victor; López-Mir, Laura; Oró, Judit; Mestres, Narcis; García, Carlos; Pomar, Alberto; Martínez, BenjaminKnowing the interactions controlling aggregation processes in magnetic nanoparticles is of strong interest in preventing or promoting nanoparticles' aggregation at wish for different applications. Dipolar magnetic interactions, proportional to the particle volume, are identified as the key driving force behind the formation of macroscopic aggregates for particle sizes above about 20 nm. However, aggregates' shape and size are also strongly influenced by topological ordering. 1-D macroscopic chains of several micrometer lengths are obtained with cube-shaped magnetic nanoparticles prepared by the gas-aggregation technique. Using an analytical model and molecular dynamics simulations, the energy landscape of interacting cube-shaped magnetic nanoparticles is analysed revealing unintuitive dependence of the force acting on particles with the displacement and explaining pathways leading to their assembly into long linear chains. The mechanical behaviour and magnetic structure of the chains are studied by a combination of atomic and magnetic force measurements, and computer simulation. The results demonstrate that [111] magnetic anisotropy of the cube-shaped nanoparticles strongly influences chain assembly features.
- ItemStudy of In-Plane and Interlayer Interactions During Aluminum Fluoride Intercalation in Graphite: Implications for the Development of Rechargeable BatteriesRodríguez, Sindy; Candia, Adriana; Stanković, Igor; Passeggi, Mario; Ruano, GustavoThe electrolyte intercalation mechanism facilitates the insertion and extraction of charge into the electrode material in rechargeable batteries. Aluminum fluoride (AlF3) has been used as an electrolyte in rechargeable aluminum batteries with graphite electrodes, demonstrating improved reversibility of battery charging and discharging processes; however, the intercalation mechanism of this neutral molecule in graphite is so far unknown. In this work, we combine scanning tunneling microscopy (STM) in ultrahigh vacuum conditions, calculations based on density functional theory, and large-scale molecular dynamics simulations to reveal the mechanism of AlF3 intercalation in highly oriented pyrolytic graphite (HOPG). We report the formation of AlF3 molecule clusters between graphite layers and their self-assembly by graphene buckling-mediated interactions and explain the origin and distribution of superficial blisters in the material. Our findings have implications for understanding the relationship between the mobility and clustering of molecules and the expansion of the anode material. This, in turn, paves the way for future enhancements in the performance of energy storage systems.