Browsing by Author "Tadić, Bosiljka"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAnalysis of Worldwide Time-Series Data Reveals Some Universal Patterns of Evolution of the SARS-CoV-2 PandemicMitrović Dankulov, Marija; Tadić, Bosiljka; Melnik, RoderickPredicting the evolution of the current epidemic depends significantly on understanding the nature of the underlying stochastic processes. To unravel the global features of these processes, we analyse the world data of SARS-CoV-2 infection events, scrutinising two 8-month periods associated with the epidemic’s outbreak and initial immunisation phase. Based on the correlation-network mapping, K-means clustering, and multifractal time series analysis, our results reveal several universal patterns of infection dynamics, suggesting potential predominant drivers of the pandemic. More precisely, the Laplacian eigenvectors localisation has revealed robust communities of different countries and regions that break into clusters according to similar profiles of infection fluctuations. Apart from quantitative measures, the immunisation phase differs significantly from the epidemic outbreak by the countries and regions constituting each cluster. While the similarity grouping possesses some regional components, the appearance of large clusters spanning different geographic locations is persevering. Furthermore, characteristic cyclic trends are related to these clusters; they dominate large temporal fluctuations of infection evolution, which are prominent in the immunisation phase. Meanwhile, persistent fluctuations around the local trend occur in intervals smaller than 14 days. These results provide a basis for further research into the interplay between biological and social factors as the primary cause of infection cycles and a better understanding of the impact of socio-economical and environmental factors at different phases of the pandemic.
- ItemEvolving cycles and self-organised criticality in social dynamicsTadić, Bosiljka; Mitrović Dankulov, Marija; Melnik, RoderickIn many complex systems, self-organised criticality (SOC) provides a mechanism for the diversity of spatiotemporal scales that optimises the system's response to omnipresent driving forces. Signatures of SOC are increasingly more evidenced in collective social behaviours. However, the spontaneous occurrence of critical states and their role in maintaining the system's functional properties still need to be better understood; the reason can be related to the complexity of human interactions and the ubiquitous presence of cycles in social dynamics. In this work, we shed new light on these issues based on a critical survey and the extensive data analysis of online social dynamics. Firstly, we highlight prominent features of human activity patterns, conditioned by circadian cycles and content-related interactions, that can affect the course of the dynamics from the elemental to the global scale. We then analyse the prototypal time series of emotion-driven communications in the online social network MySpace to demonstrate the coexistence of SOC states with the modulated cyclical trends. Precisely, we determine avalanches of emotional comments exhibiting multifractal scaling, scale-invariant inter-avalanching behaviours and temporal correlations coexist with the cyclical trends of broad singularity spectra. We demonstrate that similar multi-harmonic cycles occur in entirely different datasets, particularly the negative emotion-driven Diggs and the infection-rate data from recent epidemics. Our results reveal the dynamical regime where the modulated cycles coexist with self-organised critical states; in contrast, in the cycles-dominated regime, exemplified by the infection time series, the nature of collective dynamics remains hidden behind the cycle modulation.
- ItemSpectral properties of hyperbolic nanonetworks with tunable aggregation of simplexesMitrović Dankulov, Marija; Tadić, Bosiljka; Melnik, RoderickCooperative self-assembly is a ubiquitous phenomenon found in natural systems which is used for designing nanostructured materials with new functional features. Its origin and mechanisms, leading to improved functionality of the assembly, have attracted much attention from researchers in many branches of science and engineering. These complex structures often come with hyperbolic geometry; however, the relation between the hyperbolicity and their spectral and dynamical properties remains unclear. Using the model of aggregation of simplexes introduced by Šuvakov et al. [Sci. Rep. 8, 1987 (2018)2045-232210.1038/s41598-018-20398-x], here we study topological and spectral properties of a large class of self-assembled structures or nanonetworks consisting of monodisperse building blocks (cliques of size n=3,4,5,6) which self-assemble via sharing the geometrical shapes of a lower order. The size of the shared substructure is tuned by varying the chemical affinity ν such that for significant positive ν sharing the largest face is the most probable, while for ν<0, attaching via a single node dominates. Our results reveal that, while the parameter of hyperbolicity remains δmax=1 across the assemblies, their structure and spectral dimension ds vary with the size of cliques n and the affinity when ν≥0. In this range, we find that ds>4 can be reached for n≥5 and sufficiently large ν. For the aggregates of triangles and tetrahedra, the spectral dimension remains in the range ds [2,4), as well as for the higher cliques at vanishing affinity. On the other end, for ν<0, we find ds1.57 independently on n. Moreover, the spectral distribution of the normalized Laplacian eigenvalues has a characteristic shape with peaks and a pronounced minimum, representing the hierarchical architecture of the simplicial complexes. These findings show how the structures compatible with complex dynamical properties can be assembled by controlling the higher-order connectivity among the building blocks.