Browsing by Author "Wolfrum, Matthias"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemBumps, chimera states, and Turing patterns in systems of coupled active rotatorsFranović, Igor; Omel'chenko, Oleh E.; Wolfrum, MatthiasSelf-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of Kuramoto oscillators. For coupled excitable units, similar patterns where coherent units are at rest are called bump states. Here, we study bumps in an array of active rotators coupled by nonlocal attraction and global repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing patterns: a single incoherent unit appears in a homoclinic bifurcation, undergoing subsequent transitions to quasiperiodic and chaotic behavior, which eventually transforms into extensive chaos with many incoherent units. We present different types of transitions and explain the formation of coherence-incoherence patterns according to the classical paradigm of short-range activation and long-range inhibition.
- ItemDynamics of a stochastic excitable system with slowly adapting feedbackFranović, Igor; Yanchuk, Serhiy; Eydam, Sebastian; Bačić, Iva; Wolfrum, MatthiasWe study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this system may display noise-induced spiking, noise-perturbed oscillations, or stochastic bursting. We show how the system exhibits transitions between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance or effectively control the features of the stochastic bursting. The setup can be considered a paradigmatic model for a neuron with a slow recovery variable or, more generally, as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding stationary Fokker–Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.
- ItemLeap-frog patterns in systems of two coupled FitzHugh-Nagumo unitsEydam, Sebastian; Franović, Igor; Wolfrum, MatthiasWe study a system of two identical FitzHugh-Nagumo units with a mutual linear coupling in the fast variables. While an attractive coupling always leads to synchronous behavior, a repulsive coupling can give rise to dynamical regimes with alternating spiking order, called leap-frogging. We analyze various types of periodic and chaotic leap-frogging regimes, using numerical path-following methods to investigate their emergence and stability, as well as to obtain the complex bifurcation scenario which organizes their appearance in parameter space. In particular, we show that the stability region of the simplest periodic leap-frog pattern has the shape of a locking cone pointing to the canard transition of the uncoupled system. We also discuss the role of the timescale separation in the coupled FitzHugh-Nagumo system and the relation of the leap-frog solutions to the theory of mixed-mode oscillations in multiple timescale systems.
- ItemPhase-sensitive excitability of a limit cycleFranović, Igor; Omel’chenko, Oleh E.; Wolfrum, MatthiasThe classical notion of excitability refers to an equilibrium state that shows under the influence of perturbations a nonlinear threshold-like behavior. Here, we extend this concept by demonstrating how periodic orbits can exhibit a specific form of excitable behavior where the nonlinear threshold-like response appears only after perturbations applied within a certain part of the periodic orbit, i.e., the excitability happens to be phase-sensitive. As a paradigmatic example of this concept, we employ the classical FitzHugh-Nagumo system. The relaxation oscillations, appearing in the oscillatory regime of this system, turn out to exhibit a phase-sensitive nonlinear threshold-like response to perturbations, which can be explained by the nonlinear behavior in the vicinity of the canard trajectory. Triggering the phase-sensitive excitability of the relaxation oscillations by noise, we find a characteristic non-monotone dependence of the mean spiking rate of the relaxation oscillation on the noise level. We explain this non-monotone dependence as a result of an interplay of two competing effects of the increasing noise: the growing efficiency of the excitation and the degradation of the nonlinear response.