Quantum critical scaling for finite-temperature Mott-like metal-insulator crossover in few-layered MoS2

dc.citation.issue24
dc.citation.rankM21
dc.citation.spage245424
dc.citation.volume102
dc.contributor.authorMoon, Byoung Hee
dc.contributor.authorHan, Gang Hee
dc.contributor.authorRadonjić, Miloš
dc.contributor.authorJi, Hyunjin
dc.contributor.authorDobrosavljević, Vladimir
dc.date.accessioned2024-06-14T13:51:53Z
dc.date.available2024-06-14T13:51:53Z
dc.date.issued2020-12-24
dc.description.abstractThe dominant role of strong electron-electron interactions in driving two-dimensional metal-insulator transitions has long been debated, but its clear experimental demonstration is still not available. Here, we examine the finite-temperature transport behavior of few-layered MoS2 material in the vicinity of the density-driven metal-insulator transition, revealing previously overlooked universal features characteristic of strongly correlated electron systems. Our scaling analysis, based on the Wigner-Mott theoretical viewpoint, conclusively demonstrates that the transition is driven by strong electron-electron interactions and not disorder, in striking resemblance to what is seen in other Mott systems. Our results provide compelling evidence that transition-metal dichalcogenides provide an ideal testing ground, and should open an exciting avenue for the study of strong correlation physics.
dc.identifier.doi10.1103/physrevb.102.245424
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.scopus2-s2.0-85099126385
dc.identifier.urihttps://pub.ipb.ac.rs/handle/123456789/103
dc.identifier.wos000602255300005
dc.language.isoen
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofPhysical Review B
dc.relation.ispartofabbrPhys. Rev. B
dc.rightsrestrictedAccess
dc.titleQuantum critical scaling for finite-temperature Mott-like metal-insulator crossover in few-layered MoS2
dc.typeArticle
dc.type.versionpublishedVersion
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mradonjic2020_PhysRevB.102.245424.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format
Description:
Collections