Linear stability of periodic three-body orbits with zero angular momentum and topological dependence of Kepler’s third law: a numerical test

No Thumbnail Available
Date
2018-06-22
Journal Title
Journal ISSN
Volume Title
Journal Title
Journal of Physics A: Mathematical and Theoretical
Volume Title
51
Article Title
315101
Publisher
Institute of Physics Publishing
Abstract
We test numerically the recently proposed linear relationship between the scale-invariant period Ts.i. = T|E|3/2, and the topology of an orbit, on several hundred planar Newtonian periodic three-body orbits. Here T is the period of an orbit, E is its energy, so that Ts.i. is the scale-invariant period, or, equivalently, the period at unit energy |E| = 1. All of these orbits have vanishing angular momentum and pass through a linear, equidistant configuration at least once. Such orbits are classified in ten algebraically well-defined sequences. Orbits in each sequence follow an approximate linear dependence of Ts.i., albeit with slightly different slopes and intercepts. The orbit with the shortest period in its sequence is called the progenitor: six distinct orbits are the progenitors of these ten sequences. We have studied linear stability of these orbits, with the result that 21 orbits are linearly stable, which includes all of the progenitors. This is consistent with the Birkhoff-Lewis theorem, which implies existence of infinitely many periodic orbits for each stable progenitor, and in this way explains the existence and ensures infinite extension of each sequence.
Description
Keywords
Citation
DOI
Collections