Clustering promotes switching dynamics in networks of noisy neurons

No Thumbnail Available
Date
2018-02-21
Journal Title
Journal ISSN
Volume Title
Journal Title
Chaos: An Interdisciplinary Journal of Nonlinear Science
Volume Title
28
Article Title
023111
Publisher
American Institute of Physics Inc.
Abstract
Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.
Description
Keywords
Citation
DOI