Charge transport in the Hubbard model at high temperatures: Triangular versus square lattice
dc.citation.issue | 11 | |
dc.citation.rank | M21 | |
dc.citation.spage | 115142 | |
dc.citation.volume | 102 | |
dc.contributor.author | Vranić, Ana | |
dc.contributor.author | Vučičević, Jakša | |
dc.contributor.author | Kokalj, Jure | |
dc.contributor.author | Skolimowski, Jan | |
dc.contributor.author | Žitko, Rok | |
dc.contributor.author | Mravlje, Jernej | |
dc.contributor.author | Tanasković, Darko | |
dc.date.accessioned | 2024-06-17T07:56:00Z | |
dc.date.available | 2024-06-17T07:56:00Z | |
dc.date.issued | 2020-09-21 | |
dc.description.abstract | High-temperature bad-metal transport has been recently studied both theoretically and in experiments as one of the key signatures of strong electronic correlations. Here we use the dynamical mean field theory and its cluster extensions, as well as the finite-temperature Lanczos method to explore the influence of lattice frustration on the thermodynamic and transport properties of the Hubbard model at high temperatures. We consider the triangular and the square lattices at half-filling and at 15% hole doping. We find that for T greater than or similar to 1.5t the self-energy becomes practically local, while the finite-size effects become small at lattice size 4x4 for both lattice types and doping levels. The vertex corrections to optical conductivity, which are significant on the square lattice even at high temperatures, contribute less on the triangular lattice. We find approximately linear temperature dependence of dc resistivity in doped Mott insulator for both types of lattices. | |
dc.identifier.doi | 10.1103/physrevb.102.115142 | |
dc.identifier.issn | 2469-9950 | |
dc.identifier.issn | 2469-9969 | |
dc.identifier.scopus | 2-s2.0-85093501600 | |
dc.identifier.uri | https://pub.ipb.ac.rs/handle/123456789/106 | |
dc.identifier.wos | 000571391100002 | |
dc.language.iso | en | |
dc.publisher | American Physical Society (APS) | |
dc.relation.ispartof | Physical Review B | |
dc.relation.ispartofabbr | Phys. Rev. B | |
dc.rights | restrictedAccess | |
dc.title | Charge transport in the Hubbard model at high temperatures: Triangular versus square lattice | |
dc.type | Article | |
dc.type.version | publishedVersion |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Vranic_PRB2020.pdf
- Size:
- 1.35 MB
- Format:
- Adobe Portable Document Format
- Description: