Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR
dc.citation.issue | 44 | |
dc.citation.rank | M21a | |
dc.citation.spage | 17659 | |
dc.citation.volume | 141 | |
dc.contributor.author | Alanazi, Anwar Q. | |
dc.contributor.author | Kubicki, Dominik J. | |
dc.contributor.author | Prochowicz, Daniel | |
dc.contributor.author | Alharbi, Essa A. | |
dc.contributor.author | Bouduban, Marine E. F. | |
dc.contributor.author | Jahanbakhshi, Farzaneh | |
dc.contributor.author | Mladenović, Marko | |
dc.contributor.author | Milić, Jovana | |
dc.contributor.author | Giordano, Fabrizio | |
dc.contributor.author | Ren, Dan | |
dc.contributor.author | Alyamani, Ahmed Y. | |
dc.contributor.author | Albrithen, Hamad | |
dc.contributor.author | Albadri, Abdulrahman | |
dc.contributor.author | Alotaibi, Mohammad Hayal | |
dc.contributor.author | Moser, Jacques-E. | |
dc.contributor.author | Zakeeruddin, Shaik M. | |
dc.contributor.author | Rothlisberger, Ursula | |
dc.contributor.author | Emsley, Lyndon | |
dc.contributor.author | Grätzel, Michael | |
dc.date.accessioned | 2024-06-25T07:02:39Z | |
dc.date.available | 2024-06-25T07:02:39Z | |
dc.date.issued | 2019-10-08 | |
dc.description.abstract | Chemical doping of inorganic-organic hybrid perovskites is an effective way of improving the performance and operational stability of perovskite solar cells (PSCs). Here we use 5-ammonium valeric acid iodide (AVAI) to chemically stabilize the structure of α-FAPbI3. Using solid-state MAS NMR, we demonstrate the atomic-level interaction between the molecular modulator and the perovskite lattice and propose a structural model of the stabilized three-dimensional structure, further aided by density functional theory (DFT) calculations. We find that one-step deposition of the perovskite in the presence of AVAI produces highly crystalline films with large, micrometer-sized grains and enhanced charge-carrier lifetimes, as probed by transient absorption spectroscopy. As a result, we achieve greatly enhanced solar cell performance for the optimized AVA-based devices with a maximum power conversion efficiency (PCE) of 18.94%. The devices retain 90% of the initial efficiency after 300 h under continuous white light illumination and maximum-power point-tracking measurement. | |
dc.identifier.doi | 10.1021/jacs.9b07381 | |
dc.identifier.issn | 0002-7863 | |
dc.identifier.issn | 1520-5126 | |
dc.identifier.scopus | 2-s2.0-85074402865 | |
dc.identifier.uri | https://pub.ipb.ac.rs/handle/123456789/135 | |
dc.identifier.wos | 000495769300026 | |
dc.language.iso | en | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartof | Journal of the American Chemical Society | |
dc.relation.ispartofabbr | J. Am. Chem. Soc. | |
dc.rights | restrictedAccess | |
dc.title | Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR | |
dc.type | Article | |
dc.type.version | publishedVersion |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Mladenovic_JACS2019.pdf
- Size:
- 2.86 MB
- Format:
- Adobe Portable Document Format
- Description: