Spontaneous isotropy breaking for vortices in nonlinear left-handed metamaterials

dc.citation.issue5
dc.citation.rankM21
dc.citation.spage053853
dc.citation.volume100
dc.contributor.authorKukolj, Trivko
dc.contributor.authorČubrović, Mihailo
dc.date.accessioned2024-06-24T12:25:30Z
dc.date.available2024-06-24T12:25:30Z
dc.date.issued2019-11-25
dc.description.abstractWe explore numerically and analytically the pattern formation and symmetry breaking of beams propagating through left-handed (negative) nonlinear metamaterials. When the input beam is a vortex with topological charge (winding number) Q, the initially circular (isotropic) beam acquires the symmetry of a polygon with Q, 2Q, or 3Q sides, depending on the details of the response functions of the material. Within an effective field-theory model, this phenomenon turns out to be a case of spontaneous dynamical symmetry breaking described by a Landau-Ginzburg functional. Complex nonlinear dependence of the magnetic permittivity on the magnetic field of the beam plays a central role, as it introduces branch cuts in the mean-field solution, and permutations among different branches give rise to discrete symmetries of the patterns. By considering loop correc.
dc.identifier.doi10.1103/physreva.100.053853
dc.identifier.issn2469-9926
dc.identifier.issn2469-9934
dc.identifier.scopus2-s2.0-85075615329
dc.identifier.urihttps://pub.ipb.ac.rs/handle/123456789/130
dc.identifier.wos000498843300017
dc.language.isoen
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofPhysical Review A
dc.relation.ispartofabbrPhys. Rev. A
dc.rightsrestrictedAccess
dc.titleSpontaneous isotropy breaking for vortices in nonlinear left-handed metamaterials
dc.typeArticle
dc.type.versionpublishedVersion
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CubrovicKukolj2019.pdf
Size:
3.42 MB
Format:
Adobe Portable Document Format
Description:
Collections